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The ternary system Ln/Sb/Se was investigated in a diethylenetriamine (dien) solvent under
solvothermal conditions and two types of neutral lanthanide(IIl)-selenidoantimonate complexes
[Ln(dien)z(u-nl,nz-SbSe4)]n (Ln=Pr(1), Nd(2)) and [Ln(dien)z(nz-SbSe4)] (Ln=Sm(3), Gd(4)) were
prepared. The lanthanide ions form [Ln(dien),]>" cations with two dien chelating ligands. In 1 and
2, SbSeZ’ is a tridentate p-n';n?-SbSe, bridging ligand to connect [Ln(dien),]** into one-
dimensional coordination polymers [Ln(dien)z(p—nl,nz—SbSe4)]n; it coordinates to [Sm(dien),]** and
[Gd(dien),]*" as a 1>-SbSey bidentate chelating ligand, forming 3 and 4. Ln>" in 1-2 and 3-4 are
nine- and eight-coordinate environments, forming distorted monocapped square antiprisms and
bicapped trigonal prisms, respectively. The different coordination modes of SbSe;” between 1-2
and 3—4 are related to size of Ln*". Complexes 1-4 exhibit semiconducting properties with band
gaps of 2.08-2.28 eV.

Keywords: Lanthanide complexes; Selenidoantimonate; Lanthanide contraction; Coordination mode

1. Introduction

Ternary chalcogenidometalates have received attention due to their potential applications in
optical and electrical materials [1-6]. Since the first transition metal (TM)-containing
thioantimonate [Co(en);]CoSbySg  (en=ethylenediamine) was prepared under mild
solvothermal conditions in 1996 [7], a large number of ternary chalcogenidoantimonates,
chalcogenidoarsenates, and chalcogenidostannates have been prepared in the presence of
TMs in ethylene polyamine solvents under solvothermal conditions [8—13]. In the solvo-
thermal synthesis, ethylene polyamines, such as ethylenediamine (en), ethylenetriamine
(dien), tris(2-aminoethyl)amine (tren), and 1,4,8,11-tetraazacyclotetradecane (cyclam),
coordinate to TM"", forming [TM(polyamine),,]"" complex cations, which combine with
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chalcogenidometalate anions to form ternary chalcogenidometalates, giving Ni-containing
chalcogenidoantimonates  [Ni(tren),],[Ni(tren)(en)]>(Sb4Sg),-0.25H,0  [14],  [Ni(en)
(tren)]4Sb14S,5 [15], and [Ni(aepa),]3SbeS12, [Ni(aepa),]SbsS; (aepa= N-(aminoethyl)-1,3-
propandiamine) [16], as recent examples.

Recently, we have demonstrated that the solvothermal synthesis is a successful
approach to ternary lanthanide chalcogenidometalates by using lanthanides instead of
TMs in the solvothermal reactions, and have synthesized lanthanide(IlI)-containing
chalcogenidogermanates [17], chalcogenidostannates [18-21], chalcogenidoarsenates [22,
23], and chalcogenidoantimonates [24-27] in en or dien solvents. In the case of chal-
cogenidoantimonates, the Ln/Sb/Se system has been systematically investigated in en
solvent across the lanthanide series and two structural types of lanthanide selenidoantim-
onates, Ln(en)4(SbSe;)] (Ln=La-Nd) and [Ln(en);]SbSe40.5en (Ln=Sm-Yb), were
obtained [24, 25]. The tetrahedral SbSef’[ coordinates to [Ln(en),]>* as a monodentate
ligand in the former type, whereas it exists as a discrete ion in the latter. Investigations
of the same system in en+dien and en+trien mixed solvents also classified two types
of lanthanide selenidoantimonates with structural turnover also at Sm. Mixed lanthanide
complexes [Ln(en),(dien)(n>-SbSe4)] (Ln=La-Nd) and [Ln(en),(dien)(SbSe,)] (Ln=Sm-
Dy) were obtained in en+dien mixed solvent, while [Ln(en)(trien)(u-n',n*-SbSes)ln
(Ln=La-Nd) and [Ln(en)(trien)(n*-SbSes)] (Ln=Sm, Eu) were prepared in en+trien
mixed solvent [26, 27]. Now, the Ln/Sb/Se system is explored to elucidate lanthanide
contraction on complexation of SbSe,>~ with lanthanide in dien solvent, and new lantha-
nide selenidoantimonates, with general formula [Ln(dien)y(u-n',n>-SbSes)], (Ln=Pr(1),
Nd(2)) and [Ln(dien),(n>-SbSes)] (Ln=Sm(3), Gd(4)), were prepared. Synthesis and
characterization of 1-4 are reported and the influence of lanthanide contraction on the
Ln/Sb/Se/dien system is investigated.

2. Experimental

2.1. Materials and physical measurements

All starting chemicals were of analytical grade and used as received. Elemental analyses
were conducted using an MOD 1106 elemental analyzer. Fourier transform infrared
spectra were recorded using a Nicolet Magna-IR 550 spectrometer on dry KBr discs from
4000 to 400 cm~'. Thermogravimetric analyses were performed on a SDT 2960 apparatus
and all samples were heated under a nitrogen stream of 100 mlmin~' with a heating rate
of 5°C min~'. Room temperature optical diffuse reflectance spectra of the powder samples
were obtained using a Shimadzu UV-3150 spectrometer. Absorption (a/S) data were
calculated from the reflectance using the Kubelka-Munk function a/S=(1-R)*/2R [28],
where R is the reflectance at a given energy, a is the absorption, and S is the scattering
coefficient.

2.2. Synthesis of the complexes

2.2.1. [Pr(dien),(p-n',n>-SbSey)]l, (1). Pr,0; (82mg, 025mmol), Sb (61 mg,
0.5 mmol), Se (158 mg, 2mmol), and 3 mL dien were loaded into a teflon-lined stainless
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steel autoclave with an inner volume of 10 mL. The reaction was run at 180 °C for 6 days
and then cooled to ambient temperature. Orange prisms of 1 were filtered off, washed
with ethanol, and stored under vacuum (57% vyield based on Sb). Elemental analysis
results of the crystals are consistent with the stoichiometry of CgH,sN¢PrSbSes. Anal.
Calced for CgH,sNgPrSbSey (%): C, 12.24; H, 3.34; N, 10.71. Found: C, 12.11; H, 3.25;
N, 10.58. IR (cm™'): 3413 (m), 3245 (m), 2913 (s), 2855 (m), 1675 (m), 1579 (s), 1409
(s), 1334 (s), 1161 (s), 1102 (s), 977 (s), 900 (m), 761 (m), 753 (w), 595 (m), 494 (m),
437 (s).

2.2.2. [Nd(dien),(n-n',m>-SbSey)l. (2). Red block crystals of 2 with 55% yield (based
on Sb) were prepared with a procedure similar to that for synthesis of 1, except that
Nd,O3 was used instead of Pr,Os;. Elemental analyses are consistent with stoichiometry
CgHy6NgNdSbSe4. Anal. Caled for CgHpsNgNdSbSey (%): C, 12.19; H, 3.32; N, 10.66.
Found: C, 12.03; H, 3.23; N, 10.49. IR (cm™'): 3417 (s), 3288 (s), 3129 (s), 2920 (s),
2865 (m), 1677 (m), 1577 (s), 1458 (s), 1382 (m), 1331 (s), 1271 (m), 1150 (w), 1099
(w), 1018 (s), 758 (m), 676 (w), 522 (m), 498 (m), 431 (s).

2.2.3. [Sm(dien),(m>-SbSey)] (3). Yellow prisms of 3 with 48% yield (based on Sb)
were prepared with a procedure similar to that for 1, except that Sm,0O3 was used instead
of Pr,Os. Elemental analysis is consistent with stoichiometry CgH,sNgSmSbSe,. Anal.
Calcd for CgHyNgSmSbSe, (%): C, 12.10; H, 3.30; N, 10.58. Found: C, 11.96; H, 3.23;
N, 10.42. IR (cm™"): 3567 (s), 3233 (s), 3115 (m), 2901 (s), 2858 (m), 2369 (w), 1573
(s), 1445 (s), 1374 (w), 1305 (m), 1147 (m), 1095 (m), 1056 (s), 1013 (s), 955 (s), 809
(m), 661 (w), 550 (m), 473 (s), 421 (m).

2.2.4. [Gd(dien),(n>-SbSe,)] (4). Yellow blocks of 4 in 51% yield (based on Sb) were
prepared with a procedure similar to that for 1, except that Gd,O; was used instead of
Pr,05. Elemental analysis is consistent with the stoichiometry CgH,sN¢GdSbSe,. Anal.
Calced for CgH,6NgGdSbSe, (%): C, 11.99; H, 2.27; N, 10.49. Found: C, 11.81; H, 3.15;
N, 10.31. IR (cm™'): 3607 (s), 3290 (m), 3229 (s), 3192 (s), 2937 (m), 2856 (m), 2369
(w), 1573 (s), 1444 (s), 1376 (w), 1305 (m), 1274 (w), 1121 (w) 1095 (m), 1063 (s), 1013
(s), 956 (s), 925 (m), 896 (m), 661 (W), 597 (m), 478 (s), 418 (m).

2.3. X-ray structure determination

Data were collected on a Rigaku Saturn CCD diffractometer using graphite-monochromated
Mo-Ka radiation (A1=0.71073 A) with a w-scan method to a maximum 20 value of 50.70°
for 1, 2, 4 and 50.00° for 3. The crystal structures were solved by direct methods using
SHELXS-97 [29] and refined by full-matrix least-squares using SHELXL.-97 [30]. All non-
hydrogen atoms were refined anisotropically. Hydrogens were positioned with idealized
geometry and refined with fixed isotropic displacement parameters using a riding model.
Crystallographic, experimental, and analytical data for the title compounds are listed in
table 1.
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Table 1. Crystallographic data and structure refinement details for 1-4.

1 2 3 4
CCDC deposit No. CCDC-878974 CCDC-878975 CCDC-878976 CCDC-878977
Formula CgHzéN(,PerSe4 CgHzﬁNéNdSbS&t C8H26N6SmeSe4 CgHz(,N(,GdSbSB4
Formula mass 784.85 788.18 794.29 801.19
Crystal system Monoclinic Monoclinic Triclinic Triclinic
Space group P2;/c P2;,/c P-1 P-1
2 (Mo-Ka) (A) 0.71073 0.71073 0.71073 0.71073
a (A) 8.942(3) 8.9201(18) 8.2108(10) 8.210(2)
b (A) 13.376(5) 13.335(3) 8.2444(11) 8.234(2)
c (A) 16.549(7) 16.397(3) 16.1279(19) 16.111(4)
a (°) 90 90 93.647(2) 93.612(3)
£ (°) 97.399(7) 97.40(3) 104.513(2) 104.508(4)
7 (°) 90 90 108.971(3) 108.935
V(A% 1962.9(13) 1934.2(7) 986.9(2) 984.9(4)
VA 4 4 2 2
Deatea (gem ™) 2.656 2.707 2.673 2.702
F(000) 1448 1452 730 734
Absorption coefficient (mm ") 11.246 11.578 11.691 12.100
Reflections collected 10,533 12,220 8211 9390
Independent reflections 3565 3514 3454 3558
Rint 0.0562 0.0661 0.0443 0.0361
Reflections with [/>20(1)] 2575 2581 2616 3177
Parameters 183 178 182 182
R, [I>20(])] 0.0379 0.0808 0.0281 0.0387
WR, (all data) 0.1296 0.1333 0.0632 0.0927
Goodness-of-fit on 2 1.053 1.178 0.947 1.109

3. Results and discussion

3.1. Syntheses and infrared spectra

Chalcogenide-based lanthanide (Ln) compounds are traditionally prepared by reflux at high
temperature or the extraction method in organic solutions of tetrahydrofuran, N,N-dimeth-
ylformamide, and dimethyl sulfoxide [31-34]. However, the oxygen and water sensitivity
of these materials has hindered progress [35]. The solvothermal reaction conducted in a
closed autoclave reactor with a limited volume might dramatically decrease the unfavor-
able influence of oxygen and water. Title compounds were prepared by reactions of Sb,
Se, and lanthanide oxides in anhydrous diethylenetriamine (dien) under solvothermal con-
ditions. Being typical hard Lewis acids, Ln®" prefers combining with high electronegative
oxygen to form stable lanthanide oxides Ln,O; in solution. However, the Ln,O; oxides
are converted to unsaturated coordinated Ln—dien complexes by the chelating dien during
solvothermal reactions in anhydrous dien. The soft Lewis base SbSe,”~ binds with Ln(III)
of the Ln—dien complexes to complete coordination around Ln(III), forming [Ln(dien),(u-
n' m?-SbSes)]n (1, 2) and [Ln(dien)>(n*-SbSe4)] (3, 4). Our present and previous work have
shown that the Ln,Os/polyamine (polyamine=en, dien, and trien) system is convenient
sources of lanthanide(IlI)-polyamine complexes under solvothermal conditions [17-27].
Heated under a N, atmosphere, 1-4 lose their dien components in one step at 215-256 °C.
In IR spectra of 1-4, the broad absorption at 3567-3288cm ™' may be due to hydrogen
bonded v(N-H). The band at 1409—1374 cm ™' is attributed to w(C-N). Stretching bands at
1334-1305 cm™" are due to CH, of dien.
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3.2. Crystal structures

3.2.1. Crystal structures of 1 and 2. Complexes 1 and 2 are isostructural to [La
(dien)z(u—nl,T]Z—SbSe4)]n [26], consisting of coordination polymers [Ln(dien)z(u—nl,nz-
SbSes)]n (Ln=Pr, Nd), constructed by [Ln(dien),]*" and [SbSe,]*~. The crystal structure
of 1 is depicted in figures 1-3. Sb is coordinated by four Se atoms at 2.446(8)-2.4747(16)
A in a distorted tetrahedral geometry with Se-Sb—Se angles of 100.8(3)-114.09(6)° (table
2). The Sb—Se bond lengths and Se—Sb—Se angles are in the range of those observed in
selenidoantimonates containing SbSes> . The Pr’* and Nd*" ions are coordinated by two
tridentate ligands, forming six-coordinate [Ln(dien),]’" (Ln=Pr, Nd). The tetrahedral
SbSe,”~ are p-n'n>-SbSe, tridentate bridging with Se(l), Se(2), and Se(3) interlinking
[Ln(dien),]*" cations into a neutral one-dimensional (1-D) coordination polymer [Ln

Figure 1. (a) Crystal structure of 1 showing atom labels (thermal ellipsoids shown at 50% probability).
Hydrogens are omitted for clarity. (b) Crystal structure of PrNsSe; monocapped square antiprism in 1.

Figure 2. A view of the layer assembled by [Pr(dien),(1-n',n>-SbSes)], chains via intermolecular N—H---Se
hydrogen bonds (shown in dashed lines) in 1.
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Figure 3. Crystal stacking of 1 viewed along the a axis.

(dien)>(u-n' M>-SbSeu)]. (figure 1(a)). The polymer is based on repeating [Ln(dien)-SbSe,]
units, in which heterometallic four-membered rings LnSbSe, are formed. Ln*" is nine-
coordinate, distorted monocapped square antiprismatic with Se(1), N(1), N(2), and N(3)
forming a face and Se(2), Se(3), N(5), and N(6) forming the opposite face in 1. The
capping position is occupied by N(4) (figure 1(b)). The Ln-Se [av. Pr-Se=3.231(17)A,
Nd-Se=3.202(8) A] and Ln-N bond lengths [av. Pr-N=2.696(11), Nd-N=2.658(19) 4]
(table 2) are consistent with corresponding lengths observed [24, 25]. The [Ln(dien),(u-
n'.?-SbSey)], chains in 1 and 2 parallel along the @ axis (figure 2). Between the chains
weak N-H --- Se hydrogen bonds are observed with N---Se separations of 3.31(5)-3.84
(5)A, and corresponding N-H- - -Se angles of 144.1-170.0°, in the range of those reported
[24-26]. [Ln(dien),(p-n' ,m?-SbSe4)], chains are connected into a layer perpendicular to the
¢ axis via the N-H- - -Se hydrogen bonds (figure 3).

3.2.2. Crystal structures of 3 and 4. Compounds 3 and 4 crystallize in the triclinic
space group P-/ with two formula units in the unit cell (table 1). They consist of neutral
[Ln(dien),(n*-SbSe,)] (Ln=Sm, Gd) and are isostructural to the previously reported



Downloaded by [Renmin University of China] at 10:51 13 October 2013

656 R. Chen et al.

Table 2. Selected bond lengths (A) and angles (°) for 1 and 2.

1 (Ln=Pr) 2 (Ln=Nd) 1 (Ln=Pr) 2 (Ln=Nd)
Sb(1)-Se(1) 2.4615(16) 2.462(8) Sb(1)-Se(2) 2.4747(16) 2.470(8)
Sb(1)-Se(3) 2.4582(16) 2.446(8) Sb(1)-Se(4) 2.4512(17) 2.446(8)
Ln(1)-Se(1) 3.1894(17) 3.176(8) Ln(1)-Se(2) 3.2093(17) 3.143(8)
Ln(1)#1-Se(3) 3.2957(18) 3.289(8) Ln(1)-N(1) 2.718(12) 2.640(19)
Ln(1)-N(2) 2.695(11) 2.621(19) Ln(1)-N(3) 2.708(11) 2.70(2)
Ln(1)-N(4) 2.693(11) 2.652(19) Ln(1)-N(5) 2.651(11) 2.702(18)
Ln(1)-N(6) 2.712(10) 2.632(18)
Se(1)-Sb(1)-Se(2) 101.88(6) 100.8(3) Se(1)-Sb(1)-Se(3) 106.63(6) 116.1(3)
Se(1)-Sb(1)-Se(4) 112.45(7) 108.3(3) Se(2)-Sb(1)-Se(3) 114.09(6) 108.1(3)
Se(2)-Sb(1)-Se(4) 108.89(6) 110.7(3) Se(3)-Sb(1)-Se(4) 112.46(6) 112.3(3)
Sb(1)-Se(1)-Ln(1) 90.75(5) 90.9(2) Sb(1)-Se(2)-Ln(1) 90.04(5) 91.5(3)
Sb(1)-Se(3)-Ln(1)#1 116.18(6) 115.9(3) Se(1)-Ln(1)-Se(2) 73.60(4) 73.94(19)
Se(1)-Ln(1)-Se(3)#2 130.91(4) 139.0(2) Se(2)-Ln(1)-Se(3)#2 139.63(5) 131.2(2)
Se(1)-Ln(1)-N(1) 92.1(2) 136.1(9) Se(1)-Ln(1)-N(2) 79.6(2) 72.9(11)
Se(1)-Ln(1)-N(3) 66.2(2) 135.9(9) Se(1)-Ln(1)-N(4) 132.1(2) 75.4(9)
Se(1)-Ln(1)-N(5) 76.3(2) 81.0(12) Se(1)-Ln(1)-N(6) 148.1(2) 85.4(11)
Se(2)-Ln(1)-N(1) 134.4(2) 94.2(9) Se(2)-Ln(1)-N(2) 70.6(2) 79.4(12)
Se(2)-Ln(1)-N(3) 136.5(2) 65.1(8) Se(2)-Ln(1)-N(4) 73.3(2) 131.9(8)
Se(2)-Ln(1)-N(5) 77.3(2) 77.9(8) Se(2)-Ln(1)-N(6) 88.7(2) 146.6(12)
Se(3)#2-Ln(1)-N(1) 82.0(2) 80.3(9) Se(3)#2-Ln(1)-N(2) 136.4(2) 135.1(11)
Se(3)#2-Ln(1)-N(3) 67.4(2) 68.8(8) Se(3)#2-Ln(1)-N(4) 66.9(2) 63.909)
Se(3)#2-Ln(1)-N(5) 79.1(2) 75.7(11) Se(3)#2-Ln(1)-N(6) 79.4(2) 81.2(11)
N(1)-Ln(1)-N(2) 64.3(3) 63.3(14) N(1)-Ln(1)-N(3) 64.7(3) 65.1(12)
N(1)-Ln(1)-N(4) 135.7(3) 133.1(12) N(1)-Ln(1)-N(5) 142.0(3) 138.8(14)
N(1)-Ln(1)-N(6) 81.5(3) 82.6(14) N(2)-Ln(1)-N(3) 115.8(3) 113.2(15)
N(2)-Ln(1)-N(4) 119.5(3) 124.6(15) N(2)-Ln(1)-N(5) 144.2(3) 149.2(16)
N(2)-Ln(1)-N(6) 69.4(3) 69.4(17) N(@3)-Ln(1)-N(4) 123.9(3) 121.2(12)
N(3)-Ln(1)-N(5) 77.7(3) 75.1(12) N(3)-Ln(1)-N(6) 134.7(3) 138.6(14)
N(4)-Ln(1)-N(5) 63.3(3) 61.3(10) N(4)-Ln(1)-N(6) 62.9(3) 63.8(14)
N(5)-Ln(1)-N(6) 126.2(3) 125.1(13)

Note: Symmetry transformations used to generate equivalent atoms: For 1: (#1) x— 1, y, z; (#2) x+1, y, z. For 2:
HD) x+1,y,z, #)x—1, z

(b)

Figure 4. (a) Crystal structure of 3 showing atom labels (thermal ellipsoids shown at 50% probability).
Hydrogens are omitted for clarity. (b) Crystal structure of distorted bicapped trigonal prism SmN4Se; in 3.

Eu-analog [Eu(dien),(n*-SbSe4)] [26]. Ln*" is coordinated by two bidentate dien ligands
as in 1 and 2, forming six-coordinate complex cations [Ln(dien),]>*. The SbSe; ™ coordi-
nates to Ln>" of [Ln(dien),]’" as a bidentate 1°-SbSe, chelating ligand to form neutral
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Table 3. Selected bond lengths (A) and angles (°) for 3 and 4.

3(Ln=Sm) 4 (Ln=Gd) 3(Ln=Sm) 4 (Ln=Gd)
Sb-Se(1) 2.4894(8) 2.4872(11) Sb-Se(2) 2.4855(8) 2.4896(12)
Sb-Se(3) 2.4605(8) 2.4572(12) Sb-Se(4) 2.4561(9) 2.4553(12)
Ln-Se(1) 3.0092(8) 3.0226(12) Ln-Se(2) 3.0339(8) 2.9980(11)
Ln-N(1) 2.578(5) 2.575(7) Ln-N(2) 2.587(6) 2.598(8)
Ln-N(3) 2.582(5) 2.539(7) Ln-N(4) 2.581(5) 2.567(7)
Ln-N(5) 2.553(5) 2.570(7) Ln-N(6) 2.610(5) 2.593(7)
Se(1)-Sb-Se(2) 105.56(3) 105.39(4) Se(1)-Sb-Se(3) 108.74(3) 109.56(4)
Se(1)-Sb-Se(4) 110.86(3) 108.69(4) Se(2)-Sb-Se(3) 109.59(3) 108.85(4)
Se(2)-Sb-Se(4) 108.67(3) 110.79(4) Se(3)-Sb-Se(4) 113.14(3) 113.25(4)
Sb(1)-Se(1)-Ln(1) 86.19(2) 85.68(3) Sb(1)-Se(2)-Ln(1) 85.73(2) 86.17(3)
Se(1)-Ln-Se(2) 81.92(2) 82.22(3) Se(1)-Ln-N(1) 83.63(13) 94.04(17)
Se(1)-Ln-N(2) 78.10(12) 76.86(18) Se(1)-Ln-N(3) 91.54(13) 85.91(19)
Se(1)-Ln-N(4) 143.80(12) 138.87(16) Se(1)-Ln-N(5) 149.10(13) 153.07(18)
Se(1)-Ln-N(6) 77.35(12) 73.65(18) Se(2)-Ln-N(1) 138.85(13) 143.53(17)
Se(2)-Ln-N(2) 74.11(12) 77.26(18) Se(2)-Ln-N(3) 152.93(12) 149.17(17)
Se(2)-Ln-N(4) 94.20(11) 83.56(17) Se(2)-Ln-N(5) 85.65(12) 91.68(18)
Se(2)-Ln-N(6) 76.87(13) 78.30(18) N(1)-Ln-N(2) 65.26(17) 66.6(2)
N(1)-Ln-N(3) 65.38(17) 65.5(2) N(1)-Ln-N(4) 119.12(17) 119.3(2)
N(1)-Ln-N(5) 87.44(17) 75.4(2) N(1)-Ln-N(6) 136.27(17) 135.5(2)
N(2)-Ln-N(3) 130.35(17) 127.3(2) N(2)-Ln-N(4) 135.58(17) 136.3(2)
N(2)-Ln-N(5) 71.30(18) 76.2(3) N(2)-Ln-N(6) 144.13(18) 143.8(3)
N(3)-Ln-N(4) 75.69(17) 87.03) N(3)-Ln-N(5) 111.40(18) 110.8(3)
N(3)-Ln-N(6) 76.07(17) 71.12) N(4)-Ln-N(5) 65.08(17) 65.4(2)
N(4)-Ln-N(6) 66.78(16) 65.7(2) N(5)-Ln-N(6) 126.94(17) 130.9(3)

Figure 5. A view of the layer assembled by [Sm(dien),(n>-SbSe,)] moieties via intermolecular N-H- - -Se
hydrogen bonds (shown in dashed lines) in 3.
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[Ln(dien),(n*-SbSe,)] (figure 4(a)). The Se-Sb-Se angles of SbSe; ™ are 105.56(3)-113.14
(3)° for 3 and 105.39(4)-113.25(4)° for 4 (table 3), indicating that the SbSe, tetrahedron
is less distorted than those in 1 and 2. Both Sm*>* and Gd*" are eight coordinates involv-
ing six nitrogens of two dien and two Se of 1>-SbSe4 to form distorted bicapped trigonal
prisms, with Se(1), N(1), and N(3) forming a face and Se(2), N(4), and N(5) forming the
opposite face in 3. The capping positions are occupied by N(2) and N(6) (figure 4(b)).
The Ln-Se [av. A Sm-Se=3.0215(8), A Gd-Se=3.0103(11)A] and Ln—N bond lengths
[av. Sm-N=2.582(5), Gd-N=2.574(7)A] are consistent with corresponding lengths
observed [21, 27], and as expected, decrease from Pr to Gd due to lanthanide contraction
(tables 2 and 3). In crystal structures of 3, terminal Se(3) and Se(4) contact with NH
groups of a neighboring [Sm(dien),(n*-SbSe4)] with N- - -Se separations of 3.466(5)-3.777
(6)A and corresponding N-H---Se angles of 154.0-168.3°. Through these N-H---Se
interactions, the [Sm(dien),(n?-SbSe,)] molecules are connected into parallel chains, and
the chains are further connected into a layer perpendicular to the ¢ axis via the N-H- - -Se
hydrogen bonds between the chains (figure 5). A similar N-H---Se hydrogen bonding
network is observed in 4.

3.3. Effect of lanthanide contraction on the complexation of SbSe,” with [Ln(dien),J**

In our previous work, we prepared [La(dien),(p-n',n?-SbSes)], and [Eu(dien),(n>-SbSey)]
by reaction of Sb and Se with La,O3 or Eu,0j3 in dien under solvothermal conditions [26].
Summarizing the outcomes of the system Ln/Sb/Se/dien form La to Gd, two types of
Ln—dien—SbSe4 complexes with general formulas [Ln(dien)z(u—nl,nZ-SbSe4)]n (Ln=La, Pr,
Nd) and [Ln(dien),(n*-SbSe4)] (Ln=Sm, Eu, Gd) were obtained. In dien solvent, all Ln**
jons form six-coordinate [Ln(dien),]>" with two tridentate dien ligands. The different
coordination modes of the SbSe;,” anion to [Ln(dien),]*" result in formation of
[Ln(dien),(u-n",n>-SbSe4)]n and [Ln(dien),(n*-SbSe,)]. This structural difference is appar-
ently related to ion size and (or) coordination number of Ln*". It is well known that the
ionic radii of the trivalent lanthanide ions decrease across the lanthanide series due to lan-
thanide contraction [36]. SbSe,~ binds with La’" (r=1.061 A)-Nd*" (r=0.995A) as a tri-
dentate p-n',n>-SbSey bridge to connect [Ln(dien),]*" units into polymeric complexes [Ln
(dien)>(u-n' M>-SbSey)]n, in which the Ln** ions are nine coordinate. But, the SbSeff coor-
dinates to [Ln(dien),]*" from Sm®" (»=0.964 A) as a bidentate n°-SbSe, chelating ligand,
resulting in [Ln(dien),(n*-SbSe,)], in which the Ln>" ions are eight-coordinate. This ionic
size influence on the complexation of SbSej~ with Ln®" has also been observed in en, en
+dien, and en+ trien solvents, and the structural turnovers all occur at Sm>* across the lan-
thanide series. The Ln*" ions form [Ln(en),(SbSes)] (Ln=La, Ce, Pr, Nd) and [Ln(en),]
SbSe,-0.5en (Ln=Sm, Eu, Gd, Er, Tm, Yb) in en [24, 25], [Ln(en),(dien)(n’*-SbSey)]
(Ln=La, Ce, Nd) and [Ln(en),(dien)(SbSe,4)] (Ln=Sm, Eu, Gd, Dy) in en+dien [26, 27],
and [Ln(en)(trien)(u-n',n>-SbSeq)]l, (Ln=La, Ce, Nd) and [Ln(en)(trien)(n>-SbSes)]
(Ln=Sm, Eu) in en+trien [26, 27].

Coordination of SbSeff to the same Ln>" is much influenced by co-ligands of ethylene
polyamines, summarized for La/Sb/Se and Sm/Sb/Se systems in table 4. In en, La>" ions
form an eight-coordinate [La(en),]*" and SbSej  coordinates to La*" of [La(en),]*" as
monodentate, giving a Ng+Se donor set for La*" [26]. In en+dien mixed solvent, the La®
* jons form a seven-coordinate [La(en),(dien)]*" cation and the SbSe; ™ anion coordinates
to [La(en),(dien)]*" as a bidentate 1>-SbSey, giving a N;+Se, donor set [27]. In dien and
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Table 4. The relationship between coordination modes of SbSe,  and ethylene polyamine co-ligands in
La/Sb/Se and Sm/Sb/Se systems.

La/Sb/Se Sm/Sb/Se
Donor set Coord. mode Donor set Coord. mode
Co-ligands of La** of SbSe, of Sm** of SbSe, Ref.
en Ng+Se mono-SbSey Ng - [24, 25]
en+dien N5+ Se, nz—SbSe4 N, +Se mono-SbSey [26, 27]
dien Ng+Se; u-n' m>-SbSey Ng+Se, n>-SbSe, This work
en + trien N+ Ses u-n',n*-SbSe, Ne+Se, 1%-SbSe, [26, 27]

en+trien solvents, the La®>" jons form six-coordinate [La(dien),]*" and [La(en)(trien)]*", as
a result, SbSe ™ coordinates to La’" of both [La(dien),]*" and [La(en)(trien)]’" as a triden-
tate p-nl,nz-SbSe4, and the Ng+ Se; donor set is obtained. Similarly, the Ng, N5+ Se and
N+ Se, donor sets for Sm*>" are observed in en, en+dien, and dien (or en+ trien) sol-
vents, respectively (table 4). Consequently, SbSe,~ can be tuned to bind with Ln*' by eth-
ylene polyamino co-ligands.

3.4. Optfical properties

Solid state absorption spectra of 1-4 were recorded from powder samples at room temper-
ature. The complexes exhibit well-defined steep absorption edges from which the band
gaps (E,) can be estimated as 2.19, 2.08, 2.23, and 2.28eV for 1-4 (figures 6 and 7),
respectively, indicating semiconducting properties of the title complexes. The band gaps
are similar to lanthanide selenidoantimonate complexes with en+dien and en + trien mixed
ethylene polyamino co-ligands [26, 27] but are much larger than those of the layered cop-
per selenidoantimonates Cs,Cu,Sb,Ses (1.2-1.3eV) [37], Cu,SbSe;-0.5en (1.58¢eV) [38],
and Cu,SbSe;-en (1.61¢V) [38], showing the influence of organic component on optical
properties of the ternary selenidoantimonates.

/S Absorption coefficient (arb.unit)

05 10 15 20 25 30 35 40 45 50 655 6.0 6.5
Energy (eV)

Figure 6. Solid state optical absorption spectra of 1 (dashed line) and 2 (solid line).
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o/S Absorption coefficient (arb.unit)

T T T T T T T T T T T T T T T T T T T T T T T T 1
05 10 15 20 25 30 35 40 45 50 55 6.0 65
Energy (eV)

Figure 7. Solid state optical absorption spectra of 3 (solid line) and 4 (dashed line).

4. Conclusion

Two types of mix-coordinated lanthanide(IIl) complexes, [Ln(dien)>(u-n',n>-SbSes)], and
[Ln(dien),(n’-SbSe,)], were prepared in the solvothermal system Ln/Sb/Se in dien. The
structure turnover occurs at Sm across the lanthanide series. The soft base ligand SbSe;
coordinates to lanthanides with different coordination mode in the two structure types. In
the lanthanide series, La>*~Nd**, which have larger atomic radii, form coordination poly-
mers [Ln(dien)y(u-n',n>-SbSes)]n, in which SbSe; ™ is a u-n',n?-SbSey tridentate bridge.
The Sm*"—~Gd®" ions with smaller atomic radii result in [Ln(dien),(n’-SbSe4)], in which
the SbSe,” coordinates to Ln*" as a 1>-SbSey bidentate chelate. The structural changes of
[Ln(dien)z]”/SbSe[ and coordination mode of SbSe;” are related to the size of Ln*",
indicating lanthanide contraction influence on the Ln/Sb/Se/dien system.

Supplementary material

Crystallographic data for the structures reported in the paper have been deposited at the
Cambridge Crystallographic Data Center as supplementary data, CCDC Nos. 878974 (1),
878975 (2), 878976 (3), and 878977 (4). Copies of the data can be obtained free of charge
via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic
Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033, or E-
mail: deposit@ccdc.cam.ac.uk.
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